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Abstract: In the same sense that AdS5 warped geometries arise naturally from Type IIB

string theory with stacks of D3 branes, AdS7 warped geometries arise naturally from M

theory with stacks of M5 branes. We compactify two spatial dimensions of AdS7 to get

AdS5 ×Σ2, where Σ2 is e.g. a torus T 2 or a sphere S2. The metric for Σ inherits the same

warp factor as appears in the AdS5. Bulk fields generically have both Kaluza-Klein and

winding modes associated with Σ. In the effective 5d action these will contribute exotic

new excitations. We analyze the 5d spectrum in detail for the case of a bulk scalar or a

graviton in AdS5 × T 2, in a setup which mimics the first Randall-Sundrum model. The

results display several novel features, some of which might be observed in experiments at

the LHC. For example, we obtain TeV scale string winding states without lowering the

string scale. This is due to the double warping which is a generic feature of winding states

along compactified AdS directions. Experimental verification of these signatures of AdS7

could be interpreted as direct evidence for M theory.
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1. Introduction

The five-dimensional warped models of Randall and Sundrum [1] can be thought of as

stripped down effective field theory approximations to the near horizon geometry [2] of

a stack of N parallel D3 branes in Type IIB string theory. This near horizon geometry

is AdS5 × S5, where the Anti-de Sitter radius RAdS and the radius of the sphere are

equal, scaling like N1/4. Thus for large N the AdS physics involves an energy scale which

is parametrically lower than the string (or Planck) scale. So does the physics on S5,

but we also expect this physics to be drastically altered as one breaks supersymmetry,

and otherwise attempt to make the compactification more realistic. Since in any event

the sphere S5 is not warped, in seems reasonable to factor out this physics and examine

low energy effective 5d field theory on AdS5. In the Randall-Sundrum (RS) approach, a

phenomenological 3-brane called the Planck brane is added to truncate AdS5 in a way which
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excludes the AdS boundary. From the point of view of string theory, this is a boundary

condition which replaces the original matching of the near horizon geometry to M5×S5; in

the AdS/CFT dual language, the Planck brane is a particular choice of UV cutoff for the

4d CFT coupled to 4d gravity. The first Randall-Sundrum model (RS1) also introduces a

second brane, called the TeV brane. This brane truncates the AdS geometry in the other

direction, excluding now the AdS horizon. This is a wise idea for a low energy effective

field theory approach, since close to the horizon the field theory cutoff necessarily shrinks

to zero and stringy effects become important.

In this paper we examine an analogous story which starts with eleven dimensional M

theory. The low energy supergravity theory has a solution corresponding to a stack of N

parallel M5 branes. These M5 branes are just the magnetic sources for the antisymmetric

tensor gauge field AMNP of 11d supergravity, which also has electric sources called M2

branes. The metric part of this solution is [2]:

ds2 = f−1/3
(

ηµνdxµdxν + δijdxidxj
)

+ f2/3
(

dr2 + r2dΩ2
4

)

, (1.1)

where Minkowski indices µ, ν, run over 0, 1, 2, 3, while i, j run over 4, 5. Also, dΩ4 is the

line element for a 4-sphere, and the function f is given by

f(r) = 1 +
πNℓ3

p

r3
, (1.2)

where ℓp is the Planck length, in the convention where the M2 branes have inverse tension

(2π)2ℓ3
p.

We are interested in the near horizon geometry of this solution for (moderately) large

N . After a change of variables this is:

ds2 = e−2ky
(

ηµνdxµdxν + δijdxidxj
)

+ dy2 +
1

4k2
dΩ2

4 , (1.3)

where k = 1/RAdS , and RAdS = 2(πN)1/3ℓp.

As motivated above we will discard the unwarped sphere S4 and consider low energy

effective 7d field theories built on AdS7:

ds2 = a2(y)
(

ηµνdxµdxν + δijdxidxj
)

+ dy2 , (1.4)

where we have introduced the warp factor a(y) = exp(−ky). Our metric signature conven-

tion is (− + + + + + +). Note that AdS7 setups are very restricted by the requirement of

anomaly cancellation in the 6d boundary gauge theories [3].

2. AdS5 with extra warpings

To make contact with a Randall-Sundrum type construction, we now compactify two spatial

dimensions of the AdS7. Thus

AdS7 → AdS5 × Σ2 .
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The simplest choice for Σ2 is a torus T 2, since in this case we do not need any additional

sources in the Einstein equations to get a consistent background solution. The metric

becomes:

ds2 = a2(y)ηµνdxµdxν + a2(y)R2
(

dθ2
1 + dθ2

2

)

+ dy2 , (2.1)

where for simplicity we assume a common radius parameter R. Note that the measured

radius of the torus includes a warp factor.

Almost as simple is a compactification on a sphere S2. Since the sphere has curvature,

this requires an additional bulk source. As discussed for example in [4], two bulk scalar

fields with a simple potential allows a solution of the equations of motion with a “hedgehog”

profile for the scalars and the following background metric:

ds2 = a2(y)ηµνdxµdxν + a2(y)R2dΩ2
2 + dy2 . (2.2)

Note that the radius of the sphere includes a warp factor.

Any 7d bulk field can be expanded in a complete orthonormal basis of Kaluza-Klein

(KK) modes for Σ2. These are just sines and cosines for T 2, and spherical harmonics for

S2. Substituting the KK expansion into the 7d action, we can then integrate over Σ2 to

obtain an effective 5d action.

We will do this explicitly for the case of a 7d bulk scalar on AdS5 × T 2, and then

extend the results to discuss the 7d graviton. For the torus with radius R the squared KK

momenta are

gijpipj =
n2

1 + n2
2

a2R2
≡

~n2

a2R2
, (2.3)

where n1, n2 are integers.

In the underlying theory there will in general be additional bulk modes arising from

M2 or M5 branes wrapping one or more cycles of the torus. These will be particle-like

modes if the the other dimensions of the branes are already wrapped around compact cycles

of S4, or whatever replaces S4 in a realistic model. For example, an M5 brane wrapped

on S4 is a baryonic string [5]-[7], which can in turn wind around cycles of the torus. Such

modes can be labelled by their winding numbers, which form a two-vector of integers mi,

i = 1,2.

Whereas the KK mode contributions to the world-sheet Hamiltonian of the string are

proportional to ℓ2
pg

ijpipj , the winding modes contribute

R2

ℓ2
p

gijm
imj =

R2

ℓ2
p

a2 ~m2 . (2.4)

Note that the parameter ℓp above will in general differ from the ℓp introduced below (1.2),

by a factor of order one which depends upon how strings emerge from the original 11d M

theory.

We can write down the equations of motion for the bulk scalar in the 5d effective

theory, expanded into KK and winding modes φ~n~m(xµ, y):
[

1

a4(y)

d

dy

(

a6(y)
d

dy

)

−

(

pµpµ +
~n2

R2

)

− a2(y)m2
b − a4(y)

~m2R2

ℓ4
p

]

φ~n~m = 0 , (2.5)
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where mb is an explicit bulk mass from the 7d theory.

The usual warping of Randall-Sundrum is visible in (2.5) as the fact that the bulk

mass-squared term is multiplied by a2(y) relative to the 4d momentum-squared pµpµ. We

observe as well two new kinds of behavior:

• The KK mode mass-squared contributions from the torus have no warping relative

to the 4d momentum-squared pµpµ.

• The winding mode mass-squared contributions have double warping compared to

the ordinary bulk mass term, i.e., they are multiplied by a4(y) relative to the 4d

momentum-squared pµpµ.

Changing variables to the conformal coordinate z = 1/ka(y), and suppressing indices,

the equation of motion becomes:

φ′′ −
5

z
φ′ +

[

µ2 −
~n2

R2
−

m2
b

z2
−

~m2R2

k4ℓ4
p

1

z4

]

φ = 0 , (2.6)

where we are now putting the 4d momenta on-shell, with µ2 = −pµpµ denoting the physical

4d mass. It is the mass spectrum of µ that we want to determine from an analysis of the

solutions of (2.6).

A useful rescaling is φ(z) = k3z3h(z); then (2.6) becomes:

z2h′′ + zh′ +

[(

µ2 −
~n2

R2

)

z2 − ν2 −
~m2R2

k4ℓ4
p

1

z2

]

h = 0 , (2.7)

where ν2 = m2
b + 9. For ~n2 = ~m2 = 0, this is the equation of motion for a 5d massive

bulk scalar in AdS5, as first analyzed in [8]. In general (2.7) is equivalent to the Mathieu

equation [9].

3. 5d Kaluza-Klein mode analysis

We can take (2.7) as the starting point for a 5d Kaluza-Klein mode analysis in AdS5. To

get the analog of scalars in a Randall-Sundrum model, we can impose Neumann boundary

conditions at the location of one or two flat branes. These branes have co-dimension one,

i.e. they are 5-branes, located at z = 1/k and z = 1/T . The parameter T is assumed to

be of order the TeV scale.

To analyze graviton modes, we use the fact that in e.g. harmonic gauge each component

of the graviton obeys (2.7). The appropriate boundary conditions for the graviton modes,

after tuning the brane tensions to their conventional RS values, are:

[

zh′(z) + 3h(z)
]

z=1/k
=

[

zh′(z) + 3h(z)
]

z=1/T
= 0 . (3.1)

This means that the graviton mode solutions are identical to the mb = 0 scalar solutions,

up to an overall factor.

Let us start with the simple case where ~m = 0. The solution to (2.7) depends upon

the sign of µ2 − ~n2/R2:
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µ2 − ~n2

R2 > 0:

The solution in this case is

φ(z) =
k3z3

N

[

Jν

(

z

√

µ2 −
~n2

R2

)

+ bYν

(

z

√

µ2 −
~n2

R2

)

]

. (3.2)

Imposing the boundary condition of φ′(z) = 0 at z = 1/k and z = 1/T one gets

b = −
3Jν

(

1
k

√

µ2 − ~n2

R2

)

+ 1
k

√

µ2 − ~n2

R2 J ′
ν

(

1
k

√

µ2 − ~n2

R2

)

3Yν

(

1
k

√

µ2 − ~n2

R2

)

+ 1
k

√

µ2 − ~n2

R2 Y ′
ν

(

1
k

√

µ2 − ~n2

R2

)
, (3.3)

and

b = −
3Jν

(

1
T

√

µ2 − ~n2

R2

)

+ 1
T

√

µ2 − ~n2

R2 J ′
ν

(

1
T

√

µ2 − ~n2

R2

)

3Yν

(

1
T

√

µ2 − ~n2

R2

)

+ 1
T

√

µ2 − ~n2

R2 Y ′
ν

(

1
T

√

µ2 − ~n2

R2

)
. (3.4)

If we only consider the case of light modes where µ2 − ~n2

R2 ≪ k2, then the boundary

conditions yield

3Jν(x) + xJ ′
ν(x) = 0 , (3.5)

where

x =
1

T

√

µ2 −
~n2

R2
. (3.6)

The roots of (3.5) determine the mass spectrum. These solutions represent towers of

toroidal KK modes on top of the TeV-spaced massive warped KK modes of Randall-

Sundrum. The RS spectrum itself is also modified, since e.g., for mb = 0, ~n = 0 the

relevant Bessel functions are J3(µz) and Y3(µz), rather than J2(µz) and Y2(µz) as in

standard RS.

Since the toroidal KK modes are not warped, R∼
> 1/T corresponds to compactifications

large enough that we will see the toroidal KK excitations with spacings comparable to the

Randall-Sundrum KK modes. In order not to reintroduce the hierarchy problem, we would

then need some mechanism which naturally stabilizes R at inverse TeV values. By contrast,

if our torus were compactifying flat rather than AdS directions, then R ∼ 1/k would give

TeV-spaced KK excitations [10].

µ2 − ~n2

R2 = 0:

Now the solution to the equation of motion is

φ(z) =
k3z3

N

(

z−ν + bzν
)

. (3.7)

Similarly, the boundary conditions give us

(3 − ν)kν + b(3 + ν)k−ν = 0 , (3.8)

(3 − ν)T ν + b(3 + ν)T−ν = 0 . (3.9)
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This set of equations has no solution except when ν = 3, i.e., when there is a scalar zero

mode. The solutions then represent the tower of toroidal KK modes on top of the zero

mode.

µ2 − ~n2

R2 < 0:

In this case, the solution to the equation of motion is

φ(z) =
k3z3

N

[

Iν

(

z

√

~n2

R2
− µ2

)

+ bKν

(

z

√

~n2

R2
− µ2

)

]

. (3.10)

Imposing the same boundary condition of φ′(z) = 0 again at z = 1/k and z = 1/T one gets

b = −
3Iν

(

1
k

√

~n2

R2 − µ2
)

+ 1
k

√

~n2

R2 − µ2 I ′ν

(

1
k

√

~n2

R2 − µ2
)

3Kν

(

1
k

√

~n2

R2 − µ2
)

+ 1
k

√

~n2

R2 − µ2 K ′
ν

(

1
k

√

~n2

R2 − µ2
)

, (3.11)

and

b = −
3Iν

(

1
T

√

~n2

R2 − µ2
)

+ 1
T

√

~n2

R2 − µ2 I ′ν

(

1
T

√

~n2

R2 − µ2
)

3Kν

(

1
T

√

~n2

R2 − µ2
)

+ 1
T

√

~n2

R2 − µ2 K ′
ν

(

1
T

√

~n2

R2 − µ2
)

. (3.12)

Again if we only consider the case of light modes where ~n2

R2 − µ2 ≪ k2, then the boundary

conditions yield

3Iν(x) + xI ′ν(x) = 0 , (3.13)

where

x =
1

T

√

~n2

R2
− µ2 . (3.14)

However, (3.13) does not have a solution for positive x. Therefore no solutions exist with

µ2 − ~n2

R2 < 0.

4. 5d winding mode analysis

The most interesting new feature of our analysis is the spectrum of winding modes. For

simplicity, we will only consider the simplest case, with ~n = 0 and mb = 0. Then (2.7)

reduces to:

z2h′′ + zh′ +
(

µ2z2 − 9 −
R̃2

z2

)

h = 0 , (4.1)

where we have introduced the notation R̃ = R|~m|/k2ℓ2
p. As usual in Randall-Sundrum

setups, we will assume that kℓp is less than 1 but not dramatically so, e.g., kℓp ≃ 0.1.
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First of all, we want to see if there exists a zero mode. Setting µ = 0 the solution of

(4.1) is

φ(z) =
k3z3

N

[

Iν

(R̃

z

)

+ bKν

( R̃

z

)

]

. (4.2)

The boundary conditions give:

b = −
3Iν(kR̃) − kR̃ I ′ν(kR̃)

3Kν(kR̃) − kR̃ K ′
ν(kR̃)

, (4.3)

b = −
3Iν(TR̃) − TR̃ I ′ν(TR̃)

3Kν(TR̃) − TR̃ K ′
ν(TR̃)

, (4.4)

which cannot both be true at the same time unless T = k. Therefore there is no zero mode

for the case with winding modes only.

For the massive winding modes, the solutions can be found numerically. The details

of the analysis are provided in the appendix; here we summarize the results.

R ∼ 1/k

This corresponds to the smallest compactification radius, where we expect the winding

modes to be the lightest. Like the KK modes, these should appear as additional excitations

on top of the TeV-spaced warped KK modes of Randall-Sundrum. We find that the RS

zero mode does not have any winding excitations. The winding excitations of the lowest

lying massive RS modes have masses given by µ = µ1−0.40 R̃2T 3 and µ = µ2 +1.46 R̃2T 3,

where µ1 = 5.13T and µ2 = 8.42T are the masses of the first two massive RS modes.

Notice that the mass splittings are very small, of order 104 × T 3/k2 ∼ 10−12 eV.

R ∼ 1/T

This corresponds to a large compactification radius, thus were it not for warping we would

expect the winding excitations to be extremely heavy. However, because of the double

warping of the winding term in (2.7), we find that in this case the winding excitations are

actually of order T. Once again the RS zero mode does not have any winding excitations.

The winding excitations of the lowest lying massive RS mode have masses as shown in

Figure 1. Note that the spacing of the winding modes can be considerably less than T if

R is small, e.g., for RT ∼ 0.01 and kℓp ≃ 0.1 the spacing is a fraction of T .

5. Double warping versus T-duality

Our results for the spectrum of KK and winding modes can be understood qualitatively as

a combination of warping with the usual T-duality relation between the KK and winding

spectra. For simplicity we will not distinguish between k and ℓp in this discussion.

When the compactification radius R is of order 1/T , the toroidal KK modes are or order

T , with no additional warping. The T-dual winding modes are of order k2/T , multiplied

by a double warp factor T 2/k2; thus the winding modes are of order k2/T × T 2/k2 ∼ T ,

as reported above.
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Figure 1: Winding excitations of the lightest RS massive mode, for R̃ of order 1/T .

When the compactification radius R is of order 1/k, the toroidal KK modes are of

order k, with no additional warping. The T-dual winding modes are of order k as well, but

again multiplied by a double warp factor T 2/k2. The winding excitations are on top of the

massive warped KK excitations, which are of order T . Since the masses add in quadrature,

we expect the splittings of the winding mode excitations to be of order
√

T 2 +
T 4

k2
− T ∼

T 3

k2
, (5.1)

as reported above.

6. LHC discovery opportunities

The AdS7 → AdS5×Σ2 scenarios presented here are as well-motivated as the AdS5 effective

theories that are the basis for standard Randall-Sundrum. Both are stripped down versions

of physics which could actually emerge from string theory in a robust way, albeit decorated

with many stringy complications.

The spectrum of bulk graviton and scalar modes in our AdS7 models can differ from

standard RS1 in several ways. First of all, because we start with AdS7 instead of AdS5, the

spacing of the massive graviton modes is determined by the zeroes of the Bessel function

J2(µT ), rather than J1(µT ). The smoking gun signature of RS1 at the LHC is [11] a tower

of resonances with masses 1, 1.83, 2.66, 3.48, ..., in units of the first heavy resonance. For

our models, the prediction is a tower of resonances with masses 1, 1.64, 2.26, 2.88, ..., in

units of the first heavy resonance.

LHC experiments will also be sensitive to the extra toroidal KK states, if R is of order

a TeV. The spectrum of these additional excitations is evenly spaced, distinguishing it from

extra toroidal dimensions not associated with AdS directions [10].

LHC experiments may be sensitive to our extra winding states, depending upon which

bulk modes have winding excitations, and how they couple to Standard Model particles.

For R of order 1/T , the winding states have discrete mass spacings or order T . For R of

order 1/k, the winding states are essentially a continuum on top of a mass gap of 5.13T .
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This is somewhat reminiscent of LR models [12], but clearly distinct since in that case

there is no mass gap in the continuum KK spectrum.

Light winding states have been discussed previously in the literature [13] in the context

of ADD models [14] with a string scale on the order of a TeV [15]. Note that here we have

obtained TeV scale string winding states without lowering the string scale, and without

large extra dimensions. This is due to the double warping which is a generic feature of

winding states along compactified AdS directions.
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APPENDIX

A. Generic solution

In this appendix we perform a general analysis of the solutions to (2.7) for mb = 0. The

equation is:

z2h′′ + zh′ +
(

µ2z2 − 9 −
R̃2

z2

)

h = 0 . (A.1)

Since omitting either the µ term or the R̃ term gives Bessel’s equation, the solution to

(A.1) should be expressible as a double expansion in Bessel functions. Let us test to see if

h =
∑

CnJn(µz)In−3

(R̃

z

)

(A.2)

is indeed a solution, for some set of constants Cn.

With this ansatz we have

z2h′′ + zh′ +
(

µ2z2 − 9 −
R̃2

z2

)

h

=
∑

Cn

[

2n(n − 3)Jn(µz)In−3

(R̃

z

)

− 2xyJ ′
n(x)|x=µzI

′
n−3(y)|

y= R̃

z

]

. (A.3)

Using

I ′ν(x) = Iν−1(x) −
ν

x
Iν(x) = Iν+1(x) +

ν

x
Iν(x) ,

J ′
ν(x) = Jν−1(x) −

ν

x
Jν(x) =

ν

x
Jν(x) − Jν+1(x) , (A.4)

it is easy to get

xyJ ′
n(x)I ′n−3(y)

= −n(n − 3)Jn(x)In−3 +
1

2
xy [Jn−1(x)In−4(y) − Jn+1(x)In−2(y)] . (A.5)

Then (A.3) reduces to

z2h′′ + zh′ +
(

µ2z2 − 9 −
R̃2

z2

)

h

=
∑

[

4n(n − 3)Cn + µR̃Cn−1 − µR̃Cn+1

]

Jn(µz)In−3

(R̃

z

)

. (A.6)

Thus if

4n(n − 3)Cn + µR̃Cn−1 − µR̃Cn+1 = 0 (A.7)

then (A.2) is indeed a solution to (A.1).

Since (A.7) is a three term recursion relation, it gives us two independent choices of

initial values. For instance, one can choose one set of Cn’s such that C1 = 1, C2 = 0 and
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another set with C1 = 0, C2 = 1. We will verify below that these choices give linearly

independent solutions.

The analysis simplifies for certain ranges of parameters. Let us first consider the case

µR̃ ≪ 1. Then the C1 = 1, C2 = 0 set, to leading order of µR̃, is given by:

C0 = 8(µR̃)−1

C1 = 1

C2 = 0

C3 = 1

C4 = 0

C5 = 1

Cn =
(n − 1)!(n − 4)!

3
22n−13(µR̃)5−n, n > 5

C−1 = 1

C−2 = −8(µR̃)−1

C−n =
(n − 1)!(n + 2)!

3
(−1)n−122n−4(µR̃)1−n, n > 2 . (A.8)

We let h1 denote the solution h associated with this set of coefficients. In the same way,

let h2 be the solution with C1 = 0, C2 = 1. The detailed Cn’s are:

C0 = 1

C1 = 0

C2 = 1

C3 = −8(µR̃)−1

C4 = 1

C5 = 8(µR̃)−1

Cn =
(n − 1)!(n − 4)!

3
22n−10(µR̃)4−n, n > 5

C−1 = 0

C−2 = 1

C−n =
(n − 1)!(n + 2)!

3
(−1)n22n−7(µR̃)2−n, n > 2 . (A.9)

Since µR̃ ≪ 1, one can choose a region such that µz ≪ 1 and R̃/z ≪ 1. In this region,

one can approximate the Bessel functions by powers of their arguments. For h1, the leading

terms for each n are as follows:
Jn In−3 Cn J ∗ I ∗ C

−n (µz)n (R̃/z)n+3 (µR̃)1−n µR̃4

z3

n = 0 1 (R̃/z)3 (µR̃)−1 R̃2

µz3

n = 1 µz (R̃/z)2 1 µR̃2

z

n = 2 (µz)2 R̃/z 0 0

n = 3 (µz)3 1 1 µ3z3

n = 4 (µz)4 R̃/z 0 0

n ≥ 5 (µz)n (R̃/z)n−3 (µR̃)5−n µ5R̃2z3

where we have suppressed the numerical coefficients in front of these terms. With this

choice of parameters, one then finds that the leading contribution for h1 comes from n = 0

and n = 3: the contributions are R̃2/µz3 and µ3z3.
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Using the same method one finds that the leading contribution for h2 comes from n = 0

and n = 3 as well. This time they are R̃3/z3 and µ4R̃z3.

To check linear independence of the solutions, we can further specify the region for z

such that µ/R̃2 ≫ 1/z3 ≫ µ2/R̃. One simple choice is to have z be of order

√

µR̃. With

that choice of z, R̃2/µz3 ≫ µ3z3 and µ4R̃z3 ≫ R̃3/z3. Then to leading order one has

h1 ∼
1

z3
, (A.10)

h2 ∼ z3 . (A.11)

Obviously these are linearly independent.

We conclude that the generic solution for (A.1) is

h = A1h1 + A2h2 . (A.12)

In order to compute the spectrum, we need to apply boundary conditions at both z = 1/k

and z = 1/T :

∂

∂z
z3h = 0 . (A.13)

These two equations will determine the mass eigenvalues µ. We will only focus on light

modes with µ ≪ k. Since different approximations are used depending on the choice of

parameters, we divide the discussion into cases.

B. R̃ ∼ 1/k

We start with R̃ ∼ 1/k. Then again we get µR̃ ≪ 1. Therefore, (A.8) and (A.9) could

still be used as approximate definitions for the two solutions. Also because we are only

interested in µ ≪ k, at z = 1/k we have µz ≪ 1 and thus at z = 1/k

Jn(µz) ≈
(µ

k

)n 1

2n

1

n!
, (B.1)

and

J−n(µz) ≈
(µ

k

)n(

−
1

2

)n 1

n!
. (B.2)

The In’s are all of order one since m/z ∼ 1.

We can then list the contributions for each solution and keep only the leading contri-

bution; we find that both of those come from the term with n = 0. The boundary condition

at z = 1/k implies

A1 = −
1

8
µR̃A2 . (B.3)

Inserting this into (A.8) and (A.9), we get a combination of Cn’s for h:
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C0 ∼ (µR̃)2/16

C1 = −µR̃/8

C2 = 1

C3 = −8(µR̃)−1

C4 = 1

C5 = 8(µR̃)−1

Cn =
(n − 1)!(n − 4)!

3
22n−10(µR̃)4−n, n > 5

C−1 = −µR̃/8

C−2 = 2

C−n =
(n − 1)!(n + 2)!

3
(−1)n22n−6(µR̃)2−n, n > 2 . (B.4)

The coefficients of (µR̃)2 comes from the second order contribution and depend on the

specific choice of R̃.

B.1 µ ≪ T

We first check for the existence of very light modes: µ ≪ T . At z = 1/T , (B.1) and (B.2)

still apply. Furthermore

In

( R̃

z

)

≈ (R̃T )|n|
1

2|n||n|!
. (B.5)

We now look at h and determine the leading contributions:
Jn In−3 Cn J ∗ I ∗ C

−n (µ/T )n (T/k)n+3 (µ/k)2−n µ2T 3

k5

n = 0 1 (T/k)3 (µ/k)2 µ2T 3

k5

n = 1 µ/T (T/k)2 µ/k µ2T
k3

n = 2 (µ/T )2 T/k 1 µ2

kT

n = 3 (µ/T )3 1 k/µ µ2k
T 3

n ≥ 4 (µ/T )n (T/k)n−3 (µ/k)4−n µ4

T 3k

We see that the leading contribution of ∂z(z
3h) comes from n = 3, with a non-zero

coefficient and nothing else to cancel it. So there are actually no very light modes.

B.2 µ ∼ T

Let us now look for modes with µ ∼ T . In this case, at z = 1/T , µz ∼ 1. So all the Jn’s

are of order one, but (B.5) still applies. As before, we look for the leading terms:

In−3 Cn J ∗ I ∗ C

−n (T/k)n+3 (µ/k)2−n µ2T 3

k5 (T
µ )n

n = 0 (T/k)3 (µ/k)2 µ2T 3

k5

n = 1 (T/k)2 µ/k µT 2

k3

n = 2 T/k 1 T
k

n = 3 1 k/µ k
µ

n ≥ 4 (T/k)n−3 (µ/k)4−n µ4

T 3k
(T

µ )n
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Once again we find that the leading term comes from the n = 3 term, and there is

no other term to cancel it. However, this time the Jn’s in the prefactor can vanish; this

happens when

J2(x) = 0 , (B.6)

where x = µ/T . This equation has solutions with µ ∼ T . In order to see the correction

from implementing a non-zero R̃, we need to look at sub-leading terms. The boundary

condition at z = 1/T , up to 2nd order of R̃T , is

J2(x) − R̃2T 2
∞
∑

n=2

n!(n + 2)2n

96xn−1
Jn+3(x) = 0 . (B.7)

Given this, we can calculate the correction to the original spectrum numerically. For the

first excited mode, 5.13T − 0.40 R̃2T 3; the second massive mode has 8.42T + 1.46 R̃2T 3.

C. R̃ ∼ 1/T

C.1 µ ≪ T

Now let us look at the case when the size of the compactified dimensions gets larger. Since

for large x, In(x) doesn’t really depend on n, at z = 1/k, all the In’s can be viewed as

identical.

As µR̃ ≪ 1 still stands, (A.8) and (A.9) are still the coefficients for h1 and h2. Plug

them into the boundary condition at z = 1/k, once again we get

A1 = −
1

8
µR̃A2 (C.1)

So we can still use (B.4) to compute h, with the change that C0 is now of order µ2R̃/k.

Inserting this into the boundary condition at z = 1/T gives:

Jn In−3 Cn J ∗ I ∗ C

−n (µ/T )n 1 (µ/T )2−n µ2

T 2

n = 0 1 1 µ2/Tk µ2

Tk

n = 1 µ/T 1 µ/T µ2

T 2

n = 2 (µ/T )2 1 1 µ2

T 2

n = 3 (µ/T )3 1 T/µ µ2

T 2

n ≥ 4 (µ/T )n 1 (µ/T )4−n µ4

T 4

The leading terms are n = 1, 2, 3 and all negative n’s. Summing these contributions, the

boundary condition becomes

0 = − 3
8yI2(y) +

(

1
16y2 + 11

12

)

I1(y) −
(

1
8y + 1

y

)

I0(y)

−
∑∞

n=1
(n+2)!2n

192n y3−nIn+4(y) , (C.2)

where y = R̃T . The right-hand side is non-zero for all R̃, so there is no solution with

µ ≪ T .
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C.2 µ ∼ T

Now we have to face a situation where µR̃ is of order one. Therefore (A.8) and (A.9) are no

longer a good approximation for the coefficients of h1 and h2 and we don’t know a simple

way to write them out. The only hope now is that the first few terms in the sum dominates

and we can approximate in that way.

Let us look at z = 1/k first. In’s are identical as we stated before. We still have

µk ≪ 1 so (B.1) and (B.2) are still true. Therefore the leading term for the boundary

condition comes from the n = 0 term. This gives us

A1 = −
1

8
µR̃A2 . (C.3)

The complete set of Cn’s for h can not be computed in a simple way. The first few terms

are:

C−2 = −
16

µR̃
C−1 = 1

C0 = 0

C1 = 1

C2 = −
8

µR̃

C3 = 1 +
64

(µR̃)2

C4 = −
8

µR̃

C5 = 1 −
64

(µR̃)2
. (C.4)

At z = 1/T things are even more complicated. Now that both µz and R̃/z are of

order one, we have no approximation to use. And for large n, Cn ∼ (n!)2. However, Jn

and In decrease much faster than 1/n!. So for large n, the series converges reasonably

quickly. Therefore, we can use a finite sum to get an approximation for h and compute the

spectrum numerically. The results for the first two massive modes are shown in Figure 1.

D. 1/k ≪ R̃ ≪ 1/T

Having understood the spectrum of light modes for two specific ranges of R̃, the next step

is to understand what happens in between. For 1/k ≪ R̃ ≪ 1/T , R̃T is still much smaller

than 1 so every approximation we made at z = 1/T is still true. The only difference is that

at z = 1/k, R̃/z is no longer of order one. Instead, R̃k ≫ 1. However, the only feature

we used for R̃k in section 2 is that In+3(R̃k) are of the same order. This statement is still

true when R̃k ≫ 1. So what we got in the R̃ ∼ 1/k case applies for this situation as well.

– 15 –



E. R̃ ≫ 1/T

Now let us look at the situation when R̃ becomes large. Here for all range of z from 1/k

to 1/T , R̃/z ≫ 1. Therefore at leading order all the I ′s could be regarded as identical

In

(R̃

z

)

≈
e

R̃

z

√

2π R̃
z

. (E.1)

The boundary condition then just yields

∑

CnJn(µz) = 0 (E.2)

For µ ≪ 1/R̃, it is very similar to what we did previously. The Cn’s are calculated in (A.8)

and (A.9). We use the boundary condition at z = 1/k to get the relation of A1 and A2

and use the one at z = 1/T to check if we get a solution of µ in the region we assumed.

The same is true for the case µ ∼ 1
R̃

, except that we need to use (C.4) this time. However,

we don’t find any solutions in either case.

For µR̃ ≫ 1 things are a bit different. The Cn’s now can be separated into 2 part,

even and odd. To the leading order all Cn’s for even n are same, and all Cn’s for odd n are

the same. The boundary condition at z = 1/k gives us C0 = 0, so we only need to consider

the odd ones.

On the other hand we notice that J−n = (−1)nJn. So for odd n, Jn and J−n cancel

out. Then we have no leading term left and have to consider sub-leading terms. We use

In

(R̃

z

)

≈
e

R̃

z

√

2πR̃
z

(

1 +
1 − 4n2

8R̃
z

)

, (E.3)

and for the Cn’s given by boundary condition at z = 1/k:

C0 = 0

C2n+1 = 1 −
8

9(µR̃)2
n(n + 1)(16n4 − 40n3 − 25n2 + 67n + 18)

C2n =
4

3µR̃
n(4n2 − 9n − 1)

C−(2n+1) = 1 +
8

9(µR̃)2
n(n + 1)(16n4 + 104n3 + 191n2 + 67n − 18)

C−2n = −
4

3µR̃
n(4n2 + 9n − 1) . (E.4)

Now we plug these into the boundary condition and look for a solution for µ. However for

1/R̃ ≪ µ ≪ T there is none, and for µ ∼ T we get

∞
∑

n=1

(2n + 1)J2n+1(µT ) = 0 , (E.5)

which also has no solution.

– 16 –



References

[1] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [arXiv:hep-ph/9905221]; Phys.

Rev. Lett. 83, 4690 (1999) [arXiv:hep-th/9906064].

[2] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Phys. Rept. 323, 183

(2000) [arXiv:hep-th/9905111].

[3] T. Appelquist, B. A. Dobrescu, E. Ponton and H. U. Yee, Phys. Rev. D 65, 105019 (2002)

[arXiv:hep-ph/0201131].

[4] T. Gherghetta, E. Roessl and M. E. Shaposhnikov, Phys. Lett. B 491, 353 (2000)

[arXiv:hep-th/0006251].

[5] E. Witten, JHEP 9807, 006 (1998) [arXiv:hep-th/9805112].

[6] M. Alishahiha, arXiv:hep-th/9811042.

[7] J. Gomis, A. V. Ramallo, J. Simon and P. K. Townsend, JHEP 9911, 019 (1999)

[arXiv:hep-th/9907022].

[8] W. D. Goldberger and M. B. Wise, Phys. Rev. D 60, 107505 (1999) [arXiv:hep-ph/9907218].
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